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Abstract. The phase diagram of the q-state Potts lattice-gas (or site-diluted Potts model) 
is studied in this paper. After listing some rather simple results for different limiting cases 
of the interaction parameters, an exact mapping between the two-state model, which is 
equivalent to the Blume-Emery-Griffiths model, subjected to a special constraint and the 
pure Ising model is given for lattices with coordination number three. Thus, an exact 
intersection of the critical surface is obtained on the honeycomb lattice. The model has a 
complex phase diagram on the Cayley tree (or Bethe lattice): two types of critical endpoints, 
tricritical points and a tetracritical point are located for 1 C q < 2. The nature of the phase 
transition at multicritical points changes abruptly at q = 2. We argue that the tetracritical 
point might be found also in lower dimensions if q is less than some q , " ( d ) .  The three- 
dimensional Blume-EmeryGriffiths and correlated site-bond percolational models are 
the important cases conjectured to have tetracritical points. The divergence of the suscepti- 
bility in spite of the discontinuity of the order parameter at the pure (q+  1)-state Potts 
transition point is found on the Cayley tree (1 < q < 2). This phenomenon, which is due 
to the fact that the line of tricritical points terminates at the ( q  + 1)-state Potts transition 
point, might also be present in lower dimensions in accordance with series expansion and 
Monte Carlo results. 

1. Introduction 

In this paper we study a model with magnetic and non-magnetic atoms (spins and 
vacancies) in thermal equilibrium, where the spins can take one of q equivalent states. 
When the density of vacancies vanishes, it reduces to the pure q-state Potts (1952) 
model which has been the subject of intensive studies in recent years. In this system 
there is a single second-order phase transition which turns to first order at q = q,(d), 
where qc depends only on the dimension of the lattice (Wu 1982). The failure of 
position-space renormalisation-group methods to detect this changeover in the charac- 
ter of the phase transition suggested the introduction of vacancies into the system, 
thus enlarging the parameter space so that the pure model was mapped onto a diluted 
one under renormalisation (Nienhuis er a1 1979). Three fixed points were obtained: 
a critical one governing the surface of second-order phase transitions which also 
contained the pure model critical point; a discontinuity fixed point for first-order 
transitions and a tricritical one separating the two different ranges of the phase 
boundary. At qc the critical and tricritical fixed points merged and the whole phase 
boundary became governed by the discontinuity fixed point. This mechanism was first 
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found in the ZD case where q c = 4  is known exactly (Baxter 1973). More elaborate 
works obtained good agreement with this value (Nienhuis et a1 1980a, Burkhardt 1980). 

The model can be defined by the Hamiltonian 

= -J c [ ( S,J,  - 1 1 tl'] + W,l+ c r /L - ( as,, 1 - 1 11 t,, (1) 
( i l l  I 

where t ,  = 0 ( t ,  = 1) if the lattice site i is vacant (occupied) and s, assumes one of the 
values 1 , 2 , .  . . , 4  if r, = 1. The Potts interaction is given by the Kronecker delta, while 
the parameter (Y characterises the lattice-gas coupling. The density of magnetic atoms 
is governed by the chemical potential p, and the last term in (1) breaks the symmetry 
of the Potts spins preferring the state 1 for a positive magnetic field. Only nearest- 
neighbour ferromagnetic interactions (.I, (Y 2 0) will be considered. 

For some special values of 4 the diluted q-state Potts model (or Potts lattice-gas) 
defined by (1) has been investigated intensively for many years. The 4 = 2 case, which 
has been studied longest, is exactly the three-component or S = 1 Ising model, first 
proposed to describe the first-order transition found in magnetic systems consisting of 
triplet ions ( S  = 1) with zero-field splitting (Blume 1966, Capel 1966). Its extended 
version containing a coupling between the singlet (S, = 0) and doublet ( S ,  = * l )  states 
was later applied to 3He-4He mixtures where first-order phase separation between the 
two species or second-order superfluid transition takes place depending on the density 
of 3He atoms (Blume et a1 1971). Some other applications to systems having tricritical 
phase diagrams were also proposed (Lajzerowicz and Sivardikre 1975, Sivardikre and 
Lajzerowicz 1975a, b). I t  is worthwhile writing down the form of the Hamiltonian 
used in these references: 

%=-C ( J3 ,S j+E3ts ; )+C ( L S t - f i S , ) ,  (2) 
( I 1  1 I 

where 3, =0 ,  *l. The following equations ensure that the two-state Potts lattice-gas 
and the model defined by equation ( 2 ) ,  which we will refer to as the Blume-Emery- 
Griffiths model (BEG),  are equivalent 

/ L = A - f i ,  h = 2fi ,  ~ = 2 j  and ( 3 )  

The BEG system has been investigated so far by several forms of the mean-field theory 
(Blume 1966, Capel 1966, Blume and Watson 1967, Blume et a1 1971, Mukamel and 
Blume 1974, Lajzerowicz and Sivardikre 1975, Sivardikre and Lajzerowicz 1975a, b, 
Furman et a1 1977); position-space renormalisation-group methods (Berker and 
Wortis 1976, Burkhardt 1976, Kaufman et a1 1981, Yeomans and Fisher 1981) and 
series expansion (Saul et a1 1974). 

Mainly real-space renormalisation-group methods were employed for general 4 :  
a usual Niemeijer-van Leeuwen type type information (modifying the majority rule 
such that disorder cells be mapped onto a vacant cell site) on the triangular lattice 
(Nienhuis et a1 1979); the Kadanoff variational approach in two (Nienhuis et a1 1980a, 
Burkhardt 1980) and some other dimensions (Nienhuis et a1 1981) and the Migdal 
bond-shifting method on d-dimensional hypercubic lattices (Berker er a1 1980, Andel- 
man and Berker 1981, Nienhuis et a1 1981). The three-state Potts lattice-gas was 
used by Berker et a1 (1978) to obtain a picture of the multicritical phase diagram of 
monolayers, like krypton adsorbed on graphite, by using the Migdal renormalisation 
group on the triangular lattice. 

It is well known from the work of Kasteleyn and Fortuin (1969) that the pure 
Potts model can be extended to continuous values of q, thus providing a formulation 
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of the bond percolation problem in the limit q + 1. Following this procedure in the 
case of the diluted Potts model, the same limit produces the Ising-correlated site-bond 
percolation problem (Coniglio and Klein 1980, Wu 1981) first introduced to describe 
solvent effects on polymer gelation (Coniglio et a1 1979, 1982). The behaviour of 
clusters and droplets near the critical point in a ferromagnetic Ising system can also 
be studied by means of this percolation model (Coniglio and Klein 1980). 

The dilute q-state Potts model as given by (1) is equivalent, for vanishing magnetic 
field ( h  = 0), to the pure asymmetric ( q  + 1)-state model defined as 

X = - J ’  [ ( a s ~ , ~ ~ - l ) + ~ ’ ( ~ s ; , ~ ; a ~ ; , ~ - l ) ] - h ’ C  ( a s ; , o - l ) ?  (4) 
(ij) I 

with si = 0, 1 , .  . . , q (Coniglio et a1 1981). The correspondence between the para- 
meters: 

J = J ’ ,  a = a ‘ + 2  and p = h’+  C ( C U ’ +  l)J’, ( 5 )  

where c is the coordination number of the lattice. Mainly the q = 2 case was studied 
extensively (which means the three-state model) by series expansion (Straley and 
Fisher 1973, Kim and Joseph 1975), Landau theory (Golner 1973, Straley and Fisher 
1973, Rudnick 1975, Blankschtein and Aharony 1980) and momentum-space renor- 
malisation-group (Golner 1973, Rudnick 1975, Blankschtein and Aharony 1980), 
while a large-q expansion was used by Goldschmidt (1981) to derive the phase boundary 
of the pure Potts model in a positive magnetic field ( h ‘  > 0). All these works, with 
the exception of the paper by Blankschtein and Aharony (1980), considered the 
symmetric model (a’  = 0). 

The phase diagram of the diluted Potts model in zero magnetic field will be discussed 
in the present paper for general q and d,  and also new results concerning the phase 
boundary will be given in some special cases. We are interested especially in multicritical 
behaviour and the possible existence of a tetracritical point in our system will be 
emphasised. 

A concise version of this work focusing on the percolation problem can be found 
in Temesvari and HerCnyi (1983). 

The outline of the paper is as follows. In § 2 exact results for the phase boundary 
are summarised and a new one in a limiting case of the interaction parameters is 
derived. The BEG model subjected to a constraint is mapped, on the honeycomb 
lattice, onto the pure Ising model, thus providing an exact intersection of the critical 
surface ( 9  2.2). The phase boundary and the locations of multicritical points are 
determined on a Cayley tree in § 3. A discussion of the phase diagram and critical 
behaviour for general q and d is given in 9 4. In § 5 the percolation problem ( q  = 1) 
is investigated in more detail. We argue that a tetracritical point might exist in the 
3~ correlated site-bond model, and scaling laws are used to derive the probably exact 
exponent of the mean cluster size when approaching the Ising critical point along the 
temperature axis in the 2~ correlated site case. 

2. Exact results for the phase boundary 

2.1. General q and d 

For completeness, we first review the known results. To establish the equivalence 
between the Potts lattice-gas and the models in equations ( 2 )  and (4), a correspondence 
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between states must be given as follows: 

t =00s = 0 0  s’ = 0 

t = l  and s = l - s = + l - s ’ = I  

t = l  and s = 2 , .  . . , q * s = - l  for q = 2 - s ’ = 2 , .  . . ,q .  

Dividing the single-site terms among the incident bonds, we can rewrite the Hamil- 
tonians ( l ) ,  (2) and (4) in such a form that summations are only over nearest-neighbour 
interactions. Making equal the energies of all the possible bond configurations of figure 
1 (only the h = I? = 0 case is considered here) it follows that 

5Va = 0, 5Vb = p / c  = A/c = (a ’  + 1)J’ + h’/c ,  

5 V c = -  aJ + 2 p /  c =-j- K +2&/ c = a’J’ + 2h’/  C, ( 6 )  

5Vd = -( a - l)J  + 2 p / ~  = ? - E  + ~ A / c  = (a ‘+  l)J‘ + 2h‘lc.  

Equations (3) and ( 5 )  are direct consequences of equation (6). 
The ground-state properties, and thus the phase transition at zero temperature, 

can be easily deduced from (6). For p < IcaJ  ( p  > $caJ) all the spins are in the same 
state (there are only vacancies in the system) when T=O, thus a transition from the 
‘solid’ to the ‘gas’ phase takes place at g = IcaJ. For p = ---CO the density of vacancies 
vanishes and the pure q-state Potts Hamiltonian, with coupling constant J and magnetic 
field h, is obtained for all temperatures. 

In an early paper, Griffiths (1967) pointed out that for ? = 0 the BEG model can 
be mapped onto an Ising model in an external field. This can be easily generalised to 
q # 2. Let J = 0 but aJ finite in (1). After summing out the spin degrees of freedom, 
the partition function can be written as 

Introducing the king spins 

(+j  = 2ti - 1 (7) 

the following relations result 

JI = aaJ and H I  = acaJ + $( k T In q - p ) ,  

with the king coupling J1 and field HI.  A first-order transition line for Hl = 0 ending 
at the Ising critical point (which we will call the Griffiths point) must, therefore, be 
part of the whole phase diagram. 

A new exact result can be derived for the limiting case a -+ 00 while H = f c a J -  p 
remains finite. In this case, it follows from (6) that 5Vb -+ CO, which means that configur- 
ations with adjacent vacancies and spins are excluded (see figure 1). The partition 

Figure 1. The four bond configurations with different interaction energies in the q-state 
Potts lattice-gas. 
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function can be separated into two parts: 

where the first term comes from the ‘gas’ configuration with all ti = 0 ( N  is the number 
of lattice sites). In the second term the partition function of the pure q-state Potts 
model has appeared; this can be expressed bv means of the free energy per site f,,,, 
in the usual way. Thus 

In the thermodynamic limit ( N  + 03) we have two possibilities: for H < f,,,,, 2 = 1 
and we are in the ‘gas’ phase, while for H > f,,,, there are no vacancies in the system. 
Figure 2 shows the phase diagram for h = 0’ containing three phases. The first-order 
line H = fpure(J/ kT, h = O+) separates the ‘gas’ phase from the two others, while, of 
course, there is a transition in the pure model whose order depends on q. For q S qc( d )  
the transition from the ‘solid’ to the ‘liquid’ phase is second order and the point E in 
figure 2 is a critical endpoint. The appearance of the latent heat for q > qc( d )  means 
a break in the free energy function at the transition point, thus causing the three 
first-order transition lines to meet with three different slopes at E which now becomes 
a point of ( q  + 2)-phase coexistence. 

10) 
I F  
I 
I \ liquid 

\ 
\ 

d 

‘ E  C 

I F  I b )  
I 

l7-l 1 q-l 1 
exp I H M )  e x p  IHICTI 

Figure 2. Schematic phase diagram of the diluted q-state Potts model in the limit cy + cc, 
and H = i c a J - ~  is finite (h=O’). (a )  q s q , ( d ) .  E is a critical endpoint. ( b )  q>q, (d ) .  
E is now a transition point with ( q  +2)-phase coexistence. Note the different slopes at E 
in this case. First- (second-) order transitions are drawn by broken (full) lines. 

All the results of this subsection are summarised in table 1, where the new variables 
X ,  Y and Z are used instead of p, (Y and J/ kT: 

X 5 exp(-H/ kT) = exp[-(icaJ- p ) /  kT], 

Y = exp(-aJ/2kT) and Z=exp( - J lkT) .  (8) 

Subsequently, it will be useful to express the equations for the phase boundary in 
terms of these parameters. 
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Table 1. Exactly known transition lines and points of the diluted q-state Potts model for 
general d and q. The definition of the variables X, Y and Z in terms of H / k T  = 
(4cnJ - p ) /  kT, a and J /  kT can be found in equation (8). T,(q) and T, are the critical 
temperatures of the pure q-state Potts and Ising models, respectively. Obviously 2J,/ kT, = 
J /  kTJq = 2). X ,  is known exactly for some lattices in the case of q = 1, since it is connected 
with the random site percolational threshold. 

~~ 

Name Notation Definition Nature of the transition 

Pure q-state 
Potts line 

Griffit hs-line 
Zero-field transition 
line in the 
symmetric ( q  + 1)-state 
Potts model 

Zero-temperature 
transition points 

Griffiths-point 

Pure ( q +  1)-state Potts 
transition point 

BC 

D F  

C E  

FG 
DY 

D 

A 

C 

E 

F 
G 

Y 

x=o, 
Z =  exp(-J/kT,(q)) 
Y=O, first order 
X = exP[-jpure(-ln Z, O + ) /  kT] 
Y=O, 
Z = exp(-J/ k T , ( q ) )  
x=q, z=l first order 
X=l,Z=Y first order 
(a' = a - 2  = o ,  h' = O )  

q s q,(d): second order 
q > q,( d) :  first order 

q s q,(d): second order 
q > q,(d):  first order 

X=l, Y=O,Z=O first order 
( f f > O )  

X=X,, Y=l,Z'=O q q,(d):  second order 
(a = O )  q > qc( d):  first order 
x=o, Y=O, q s q,(d): second order 
Z = exp(-J/ kT,(q)) q > q,(d): first order 

Y =o,  
Z = exp(-J/ kTJq))  
x=q, Y=O, z=1 
x=q, 
Y =exp(-2J,/kTc), Z= 1 
X = l ,  
Y = Z = exp[-J/ kT,(q + l)] 
( a '  = a - 2  =o ,  h' = O )  

q 6 q,(d) :  critical 
endpoint 
q > q c ( d ) :  (q+2)-phase 
coexistence 

first order 
second order 

q s q,(d) - 1: second order 
q > q,(d) - 1 :  first order 

2.2. Exact mapping of a special case of the honeycomb Blume-Emery-Grifiths model 
onto the pure Ising model 

Transformations, such as e.g. the decoration, dedecoration and star-triangle, have long 
been useful in establishing relationships between different lattice models. Their com- 
mon property is that the Boltzmann weights of corresponding configurations are  left 
unchanged (or more precisely, they are multiplied by a constant) under this transforma- 
tion by suitably relating the parameters of the two models. For lattices with coordina- 
tion number three, a correspondence between the BEG and pure king models can be 
found by similar steps of transformations (see figure 3). 

Firstly the interactions of the BEG (or diluted two-state) model are decorated by 
the usual (+ = *1 Ising spins. From the relations between the corresponding Boltzmann 
weights of all the possible four bond configurations, we obtain 

(9) cosh 2 j ' /  k T  = exp(2j /  kT) ,  exp( A'/ kT) = exp{[d + $(j- g ) ] /  kT} 

and 
exp(-K/kT) =cosh ( j /kT) .  
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Figure 3. The series of transformations for finding the correspondence between a Blume- 
Emery-Griffiths model with the constraint exp(-R/kT)  = c o s h ( j / k T )  and the pure king 
model on lattices with coordination number three. Open circles are for = 0, *1, while 
full circles are for U = *l Ising spins. 

The constraint for the BEG model in (10) is needed since the original equations are 
overdetermined. Extending these considerations to the general q case, in order to 
establish a condition of being able to decorate a bond of the diluted model by a pure 
Potts spin, we could obtain an equation which is also the constraint for the diluted 
Potts model to have a pure dual with multispin interactions (Wu 1981). 

spins at the vertices are replaced by (+ spins in the second step. We notice 
this can be made only for the two-state case since otherwise the number of different 
configurations of the Potts spins surrounding a vertex would be three instead of two. 
It is straightforward to obtain: 

The 

2J" 
2 cosh -= 1 + 1 + 2 exp(-b'/ k T )  cosh(3.f'/ kT) 

kT 1 + 2 exp(-d'/ kT) cosh(.?/ k T )  ' 

Finishing the procedure, a simple dedecoration provides the pure Ising model: 

exp(2Y"'/ k T )  = cosh(2.f"/ k T ) .  (12) 

From (9)-( 12), the mapping between the constrained BEG and pure Ising models 
follows: 

e x p ( g )  = 1 + 4 sinh(.f/ kT)  
exp(b/ kT)  cosh(.f/ kT)  + 2  exp(-.f/ kT)  ' 

which is valid when (10) is fulfilled. 
An intersection of the phase boundary of the BEG model is obtained by taking the 

exactly known critical condition for the Ising model on the left-hand side of equation 
(13). Returning to the variables defined in (8) and using (3),  the constraint in (10) 
becomes 

Y ' = i ( l + Z )  (14) 

and the critical condition from (13) for the honeycomb lattice (for a Cayley tree with 
branching ratio two) is 

z/ ( 1 - Z )  + X( 1 + Z ) / 4  Y3( 1 - Z )  + I /  (1 + j 3 )  ( = + I  (15) 
Since under transformation (13) only an irrelevant constant is added to the free energy, 
the constrained BEG model has a continuous transition along the critical surface given 
by (14) and (15) and belongs to the universality class of the pure king model. 

3. Multicritical behaviour on the Cayley tree 

To obtain a picture of the topology of the phase diagram, we locate first-order, critical 
and multicritical points in the case of the Cayley tree (or Bethe lattice). We must, 
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however, proceed with some caution; a Cayley tree has a finite surface to volume ratio 
in the thermodynamic limit (therefore, it can be considered in some sense as an 
infinite-dimensional lattice), thus boundary effects may be essential in determining 
thermodynamic properties. In contrast with the case of regular lattices, here it is 
important how the single-site variables in the Hamiltonian are divided between the 
incident bonds. Since our goal is to imitate the phase diagram on regular lattices, all 
the exact results of 0 2.1 must be preserved. The correct zero-temperature transition 
at H = icaJ - p = 0 can be obtained by the following regrouping of Hamiltonian (1) 

(16) 

It is easy to check that the line DF of table 1 is also reproduced in this way (which is 
not the case when the Hamiltonian is left in the form of equation (1)). 

Another difficulty arises when we try to define the order parameters. For regular 
lattices, the following definitions seem to be convenient: 

2 = -J 2 [ ( a , , ,  - l)flt, + at,t, --;a( ti + f , ) ]  -c [ H  + h( - l)]tl. 
( i i )  I 

and (17) 

where (. . .) denotes the thermal average. Here m1(m2) is the q-state Potts (the 
lattice-gas) order parameter and the homogenity of the lattices was utilised in deriving 
the second equations (the index "0" refers to the site at the origin). This homogenity, 
however, is absent in the case of the Cayley tree. For the pure Ising and Potts models, 
the spontaneous magnetisation was found to be zero for all temperatures, while the 
averages at the origin showed the usual behaviour of an order parameter vanishing at 
the transition point with mean-field exponents (Eggarter 1974, Wang and Wu 1976). 
Therefore, we adopt, as the definition of the order parameters, the second parts of 
equation (17). 

The method of calculating thermodynamic functions on Cayley trees is well known 
(see e.g. Eggarter 1974, Wang and Wu 1976): the summation over surface variables 
can be performed successively, renormalising the single-site parameters at the boundary 
in each step. The procedure is shown in figure 4 and the recursive equations are easily 
derived. Making equal the Boltzmann weights for the three different single-site states 
t = 0 ,  s = l  and s > l  weobtain 

A,,, = A:-'{ 1 + exp[(H, - i d ) /  kT][ 1 + ( q  - 1) exp( -h,/ kT)]}'-' 

A,+ exp(H,, k T) 

=A;-'[l +exp[(H,+jaJ) /kT]  

x { 1 + ( q  - 1) exp[-(J + h,)/kTI1DC-' exp{[H - $ ( c  - 1)aJl lkT) 

Ani1 exp[(Hn+~- k + l ) / k T l  
= A 1 + exp[ ( H ,  + i d ) /  k T ]  

X { exp( - J /  kT) + exp( - h, / k T )  

+ ( q  -2) exp[-(J+ h,)/kT]JI'-' exp{[H- h - i ( c -  l)cyJ]/kT}, 
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Figure 4. Cayley tree (or Bethe lattice) with branching ratio two ( c = 3 )  showing the 
method how the recursion relations of equation (18)  are obtained: after summing over 
the variables in the nth generation (surface sites), the single-site parameters (H and h )  
of the ( n  + 1)th generation will be renormalised. 

where the multiplicative factors, A,, and A,+1,  are important only for the calculation 
of the partition function and c-  1 is the branching ratio of the Cayley tree. The 
recursion formula for H, and h,, using the variables of equation (8), is then given by 

In the thermodynamic limit, eliminating all the degrees of freedom but those at the 
origin and its surrounding sites, the field variables go to a fixed point X*, h*. As a 
last step, equation (18) is used with c, instead of c - 1, and X,, = X*, h, = h* to obtain 
a single site with X,, =exp(-H,,/kT) and heff. The partition function and the order 
parameters can be expressed by the effective fields: 

Z = A e d 1  +exp(HedkT)[ l  +(q-1)  exp(-h,dkT)I), 

From now on only the c = 3 case will be considered. For vanishing magnetic field 
there is a fixed point X g ,  h* =0, where X,* can be calculated from (18): 

I* X,*+qY x,* = x( 
X , * Y + l + ( q - l ) Z  . 

From equation (20) we can deduce that a first-order lattice-gas transition takes place 
in two cases: (i) when the initial value X gets from the region of attraction of one 
fixed point to that of another and (ii) when an attractive fixed point becomes marginal 
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and finally disappears causing an abrupt change in HeR. The location of these two 
types of lattice-gas transition in the 3~ parameter space X, Y and 2 can be easily 
determined by straightforward algebra from equation (20); the results are given in 
the first two rows of table 2. 

Table 2. Transition surfaces, lines and poicts for the q-state Potts lattice-gas on a Cayley 
tree with branching ratio two (1  q < 2). The notation U = q-'[ 1 + ( q  - 1 ) Z ]  is used. There 
is first-order q-state Potts transition also on a part of the lattice-gas surface bounded by 
the lines EY, YJ, JK, KD and DE. 

Name and/or Boundary lines 
notation or points Defining equation 

Lattice-gas transition 
surface (with fixed 
point changing) 
Lattice-gas transition 
surface (with a marginal 
fixed point) 

q-state Potts 
transition surface 

Lattice-gas critical line 
Tricritical line 

Line separating the two 
types of lattice-gas 
surfaces 
Line of type-I critical 
endpoints 
Line of type-I1 critical 
endpoints 

Pure ( q  + 1)-state Potts 
transition point (Y)  
Tetracritical point ( J )  

E 
K 
I 
G 

GF, FD, DH and HG 

GH, HI and IG 

BC, CE, EY, YJ, JK, 
KA and AB 

1 and G 
Y and J 

H and G 

J and K 

E and Y 

x = q ( u  - Y ) / ( l -  Y )  = x,, 

qu( U + 3 Y2 + t ' ) 2  
X =  = X i G  

~ Y ( u  - 3  Y 2 +  0) 

with 
t' = ( u 2 -  1ou Y 2 +  9 Y4)I'* 

4qY(1 - u ) 2 [ 2 - ( q + l ) u l  
( 4 -  1)[2-(q+ l ) u + ( q -  1) Y2]2 

X =  

= XP"lrs 
u = 9 Y 2  and X = 2 7 q Y 3  
Y 2 =  Z[2-  ( q  + l )u l / [3  - ( 4  + 2)ul  
and X = XPotts 
U =  Y ( 2 - 3 Y ) / ( 1 - 2 Y )  

X = X,,,,, = X l o  and 
x = XP0llS = XLti 
x = XPottr = XL, 

X = l  ( a = 2 )  

Y 2  = [3(2q + 1)I-l 
( a = l + I n 3 / 1 n ( 2 q + l ) )  
Y=O 
z=o 
z=o 
z= 1 

The lattice-gas ordering is not the only phase transition in the model. The zero-field 
fixed point we have just obtained may be unstable against a small perturbation of the 
magnetic field: the q-state Potts ordered phase is characterised by a finite-field fixed 
point giving rise to a non-vanishing m, in equation (19). The stability condition can 
be derived from (18): 

h=O ah,+,/ah, = 1 + C1, 

with 

c, = 2(1 -Z)/[X$ Y + 1 + ( q -  1)Z]- 1. 
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Here C1 > 0 (C, < 0) means the ordered (disordered) phase and there is a q-state Potts 
transition at C1 = O  (see table 2). C1 changes sign also at a section of the lattice-gas 
surface bounded by the lines EY, YJ, JK, KD and DE because of the discontinuity 
in X,* (see table 2 for notation). This abrupt change causes simultaneous q-state Potts 
and lattice-gas transitions which are, of course, first order. 

Near the Potts transition (C, = 0) there is always a fixed point with h* = 0 in 
addition to that with h* = 0. It can be determined from the following series derived 
directly from equation (18): 

C , ( h * / k T ) + C 2 ( h * / k T ) 2 + C 3 ( h * / k T ) 3 + .  . . =0,  (22) 

where the coefficients are functions of X ,  Y, Z and C1 is explicitly given in (21). Thus 
the finite-field fixed point takes the form 

h */ k T = - C1 / C2, 

where C2 must be taken at the critical surface. After a lengthy calculation, C2 proved 
to be constant on the whole Potts transition surface leading to 

h*/ kT = -4qCl/(q - 2). (23) 

As it turns out, the finite-field fixed point with h*=0 is positive and stable in the 
ordered phase only for q < 2  (stability can be easily checked by means of equation 
(18)), while h* (and thus also heR) is finite even at the Potts transition for q > 2 giving 
rise to  a discontinuity of m, on the whole phase boundary in this case. Hence we 
conclude that qc = 2 on the Cayley tree. Details of the phase diagram will be presented 
for the three different cases separately. 

3.1. 1 < q < 2  

For given J, a and p the order parameter critical exponent p can be defined, using 
(19) and (23), as follows: 

m, - bee- h*- Cl - IT- TcJp, 

where the absolute value is needed since for some a’s, as will be shown, ordering may 
occur above T,. It follows from equation (21) that X,* approaches its critical value 
(for fixed J,  a and p )  with the same exponent p. Therefore, we can determine p by 
investigating the cubic equation (20). 

The results for the phase diagram are summarised in table 2 and its topology is 
shown in figure 7 ( a ) .  Three different values were obtained for the critical index p :  
(i) p = 1 on the q-state Potts surface and along the lines of critical endpoints; (ii) p = $ 
along the tricritical line; (iii) p = f  in the tetracritical point. The tricritical line, as 
contrasted with the q = 2 case, coincides with the intersection of the q-state Potts and 
lattice-gas transition surfaces. This can be seen in figure 5 (  c ) ,  where the phase diagram 
shows a tricritical point which is also the origin of the lattice-gas transition line, very 
similarly to critical endpoints on JK and EY (figure 5 ( a )  and ( e ) ) .  There are, however, 
two essential differences: first p = 1 along JK and EY, secondly the three lines intersect 
with the same slope at a tricritical point, which is not true for critical endpoints. A 
critical endpoint on JK (EY) is called type-I (type-11) in this paper. A phase diagram 
containing a type-I critical endpoint (figure 5 ( a ) )  has the property that the lattice-gas 
critical point is in the ordered phase where m, > 0 (see also Ziman et a1 (1982), where 
this type of critical endpoints was investigated in the king case). The process of how 
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Figure 5. Phase diagram of the diluted Potts model on a Cayley tree with branching ratio 
two for different values of a (1 < q < 2). Broken (full) lines are for first- (second-) order 
transitions. The arrows denote: ( a )  a type-I critical endpoint (a < &); ( b )  the tetracritical 
point (a = &); ( c )  a tricritical point (a'< a < 2);  ( d )  the pure ( q  + 1)-state Potts transition 
point (a = 2); ( e )  a type-I1 critical endpoint (a > 2). For a range of the parameter a an 
intermediate temperature region with non-zero-order parameter ( m l  > 0) appears. This 
is shown by the vertical line crossing the ordered phase in ( b ) .  

different types of multicritical points follow each other when changing a is shown in 
figure 5 :  a type-I critical endpoint becomes a tricritical point through the tetracritical 
point at 

while the type-I1 critical endpoints take their origin at the pure ( q  + 1)-state Potts 
transition point for a = 2. The tetracritical point and the pure ( q +  1)-state Potts 
transition point are on the lattice-gas critical line (IG) and on the line separating the 
two different regions of the lattice-gas transition surface (HG), respectively (see figure 
7(a)) .  We call attention to the strange phenomenon which can be observed for an 
interval of the parameter a(see e.g. figure 5 (  b ) ) :  there is an ordered q-state Potts-phase 
in an intermediate temperature range with two critical transitions! 

We are especially interested in the case a = 2 (see figure 5 (  d ) )  when, according to 
(4) and ( 5 ) ,  the pure (q+l)-s ta te  Potts model is obtained. In the region we are 
investigating ( 4  + 1) > qc = 2 and the transition must be first order, which is indeed the 
case since m2 has a discontinuity at the zero-field transition point. An interesting thing 
happens, however, if we consider the susceptibility x2 defined, together with xl, by 

a' = 1 +In 3/ln(2q+ l ) ,  

x ,  = am,/ah and x r =  am2/a(p + h) .  

Since the q-state Potts critical surface persists up to the ( q  + 1)-state transition point, 
x1 diverges even at Y. But all the ( q +  1) states are equivalent for a = 2, H =  h = 0  
and thus x2 must also diverge at Y. This phenomenon, a discontinuity in the order 
parameter and divergence of the susceptibility, has been found by series expansion in 
lower dimensionalities (Kim and Joseph 1975). Here it is the consequence that the 
tricritical line terminates in Y instead of a type-I1 critical endpoint. The intersection 
of the lattice-gas critical line (IG) and the a = 2 subspace gives the critical point for 
h' > 0 ( H  < 0) which is thus Ising-type. 
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I 
I 

3.2. q >  2 

All the manifolds of the phase diagram listed in table 2 are present but with a different 
character: there are first-order transitions everywhere except along IG. Along YJ, 
for example, ( q  + 2 )  phases coexist and it is not any more a line of tricritical points. 

I 
I 

3.3. q = 2 

Since C2 = 0 on the whole two-state Potts transition surface the third-order term must 
be taken into account in the expansion of equation ( 2 2 ) .  Thus 

h*/  kT = (-Cl/C3)1’2 

and it is real in the ordered phase ( C1 > 0) if C3 < 0. In this case the transition is 
continuous and /3 =$, which is the well known Ising mean-field exponent. C3, in 
contrast with C,, is not constant on the phase boundary and C3 = 0 defines the tricritical 
line, which can be obtained from equation (18): 

Y 2  = ( 1 + Z) (  3 2  - 1)/2( 5z - 3). 

It lies, of course, on the two-state Potts transition surface (which can be taken from 
table 2 with q = 2 )  but it is not its boundary. This tricritical line terminates on the 
line of type-I1 critical endpoints (a property found previously in mean-field calculations 
for the BEG model (Blume et a1 1971, Mukamel and Blume 1974, Berker and Wortis 
1976, Furman e? a1 1977, Blankschtein and Aharony 1980)) for 

a = 2.358. 

Phase diagrams for different a’s are shown in figure 6: tricritical points are now 
separated from quadruple points and the three-state Potts transition point itself ( Y  
for a = 2, see figure 6(d))  is a quadruple point (Straley and Fisher 1973). All the 
results for q = a = 2 agree with those of Baumgartel and Muller-Hartmann (1982) 
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who studied the symmetric Potts model on a Cayley tree. Also the line derived in 
§ 2.2, equations (14) and (15), for the Cayley tree with coordination number three is 
reproduced and found to  be entirely on the critical surface. 

W e  must take note of the discontinuity of the phase diagram at q = qc = 2, a property 
which is missing in lower dimensions. We can, however, refer to  the similar discontinuity 
in the mean-field critical exponents a and p :  a = -1, p = 1, for q < 2 and a = 0, p = $ 
for q = 2. Since the changeover in the nature of the phase transition occurs at qc = 2 
for all dimensions larger than four (Wu 1982),  we think the discontinuity property 
found on the Cayley tree is true for all d > 4. 

4. Discussion 

Some properties of the phase diagram in lower dimensions can be deduced from the 
exact results of § 2, the Cayley tree solution of 0 3 and approximate calculations in 
the literature. 

The appearance of a new type of lattice-gas transition (with a marginal fixed point) 
for q >  1 on the Cayley tree ensured the changeover in the nature of the pure 
(q + 1)-state Potts transition at q = q c ( a )  - 1 = 1. Perhaps this mechanism is also present 
on regular lattices. In this case the pure (q + 1)-state Potts transition point lies on the 
line separating the two types of lattice-gas transition surface (terminates the lattice-gas 
critical line) for q > q c - l  ( q s q c - l ) .  

Nienhuis et a1 (198 1) found, using the Kadanoff variational renormalisation-group 
method in investigating the diluted Potts model that for d = 2 . 3 2 ,  the third thermal 
eigenvalue of the tricritical fixed point was relevant if q was less than some qm 
(1 < qm < 2). Thus the originally tricritical fixed point became a tetracritical one with 
three relevant thermal eigenvalues and Nienhuis et a1 (1981) argued that tricritical 
behaviour was governed by a Gaussian fixed point leading to classical tricritical 
exponents for q < qm. We can naturally identify their qm( d )  with the value where the 
type-I critical endpoints terminating at the tetracritical point appear and simultaneously 
tricritical behaviour becomes classical. On the Cayley tree ( d  = 00) qm = 2 and we 
conjecture this may be true for all d > 3, since in the BEG model the upper tricritical 
dimensionality is three. A type-I critical endpoint has been found in the special case 
of three-dimensional correlated site percolation (q = 1 and Z = 0): the ordered phase 
with an infinite cluster contains the Ising (or lattice-gas) critical point and the system 
begins to percolate on the coexistence curve below the Ising critical temperature 
(Muller-Krumbhaar 1974, Sykes and Gaunt 1976). Taking into account all the above 
considerations, qm(d)  can be drawn schematically as in figure 8. With the analogy of 
qc( d )  we expect that the phase diagram changes continuously along qm( d )  for d < 3: 
the tetracritical point appears at Z=O and moves toward larger Z values as q is 
decreased from qm. It would be interesting to examine in detail the 3~ BEG model 
since, according to our prediction, it should have a tetracritical point at Z = 0. 

The phase diagram for q m ( d )  < q s qc( d )  - 1 seems to be well described by the 
renormalisation-group studies enumerated in the introduction. Thus the lattice-gas 
and q-state Potts surfaces have two intersections: the line of type-I1 critical endpoints 
(EY) and the tricritical line (YI). As usual, in the case of tricritical points, the two 
surfaces merge smoothly along YI. 

We finish with some remarks concerning the phase diagram of the pure (q + 1)-state 
Potts model of Hamiltonian (4)  in the symmetric case a’ = 0. If the divergence of the 
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Figure 7. The topology of the phase diagram (see tables 1 and 2 for the notations used). 
( a )  Exact result for the Cayley tree ( c  = 3) in the case 1 < q < 2. The broken line (GH) 
separates the two types of lattice-gas transition; ( b )  Exact result for the Cayley tree ( c  = 3) 
in the case of percolation ( q  = 1). The tetracritical point (J)  and the transition point where 
Ising droplets diverge (Y)  coincide. The lattice-gas transition surface with the marginal 
fixed point disappears at q = 1 ( H  = 1); ( c )  Conjectured phase diagram for three-dimensional 
percolation. The tricritical line YJ is expected to have classical exponents; ( d )  Two- 
dimensional case of percolation. The Ising critical point I is now also the place where the 
system begins to percolate ( I  = K).  Y1 is the one-state Potts tricritical line. 

susceptibility (Kim and Joseph 1975) and the specific heat (Binder 1981) at the 
zero-field transition point were true for q > qc( d )  - 1, in spite of the discontinuity in 
the order parameter and energy, it would suggest the phase diagram of figure 5 ( d )  
without a tricritical point (as compared with figure 6( d ) )  in two and three dimensions 
as well as on the Cayley tree. This would mean that the line of tricritical points should 
terminate at Y rather than on the line of type-I1 critical endpoints not only on the 
Cayley tree but also in lower dimensions. The critical point in positive field was found 
to be Ising type in the large-q limit (Goldschmidt 1981). Since in all renormalisation- 
group investigations (Berker and Wortis 1976, Berker et a1 1978, 1980, Coniglio and 
Klein 1980, Andelman and Berker 1981, Kaufman el a1 1981, Yeomans and Fisher 
1981) the lattice-gas critical line was governed by the Griffiths point and it is exactly 
Ising type (see § 2.1); this property is probably true for all q >  q c ( d ) -  1. 
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Figure 8. 9,(d)  and 9 , ( d )  are drawn schematically with full and broken lines, respectively. 
For 9 9 , ( d )  a tetracritical point can be found in the system and tricritical behaviour 
should be classical. At 9 J d )  the nature of the Potts transition changes from second to 
first order (taken from Wu (1982)). 

5. Correlated site-bond percolation 

The diluted Potts model describes Ising-correlated site-bond percolation in the limit 
q --* 1 (Coniglio and Klein 1980, Wu 1981). Now, the atoms do not occupy the lattice 
sites randomly, but different configurations are weighted by the Boltzmann factors 
exp( - XLG/ kT)  with the lattice-gas Hamiltonian 

XLG = -aJ tit, + p C tt. 
( 1 1 )  I 

Eventually bonds are introduced between nearest-neighbour occupied sites randomly 
with the probability (Kasteleyn and Fortuin 1969, Coniglio and Klein 1980, Wu 1981) 

pB = 1 - exp(-J/ k T )  = 1 - Z. (24) 

Because of its relevance to describe solvent effects on the sol-gel transition, this 
model was intensively investigated on the Cayley tree (Coniglio 1975, 1976, Coniglio 
et af 1979, 1982, di Liberto et al 1983). We analyse the phase diagram, using the 
results of § 3, as the limit q = 1' of the diluted Potts model (figure 7(a)  and ( b ) ) .  
Conjecture and exact results will also be presented for the two- and three-dimensional 
cases (figure 7(c) and (4). 

The lattice-gas surface with the marginal fixed point vanishes just at q = 1 on the 
Cayley tree and phase separation occurs, independently of pB, for 

X = l  and Y < f ,  
where the king critical value of the parameter Y was used. This result is also true in 
lower dimensions but, of course, $ must be exchanged with the Ising critical value of 
the given regular lattice. 

The ( q  + 1)-state Potts transition point and the tetracritical point, as can be seen 
in figure 7(a)  and ( b ) ,  join together at q = 1 forming a new multicritical point where 
critical 'droplets' diverge (Coniglio and Klein 1980) for 

2 and P B  = 3. X = l ,  y=' 3 

As a result, on the Cayley tree both type-I and type-I1 critical endpoints take their 
origin at this point, which lies in the a = 2 subspace having attracted much interest in 
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recent years (Kertbsz et a1 1982 and references therein) because it proved to be a 
good candidate for describing clusters (which are called droplets here) diverging at 
the Ising critical point T, with king exponents (Coniglio and Klein 1980). Indeed, it 
can be verified using (20) with q = 1 and in the vicinity of the ‘droplet’ critical point 
that the percolational probability P which is proportional to m, (Coniglio and Klein 
1980, Wu 1981) vanishes with the mean-field Ising exponent when approaching the 
‘droplet’ critical point: 

P - M ,  - ( T, - T)1’2. 

The type-I critical endpoint K can be found in the subspace of correlated site 
percolation ( pB = 1) and corresponds to the percolational temperature Tp on the 
coexistence curve below the Ising critical temperature T, belonging to the point I (see 
figure 7( b ) ) .  We obtained 

T,/ T, = 0.9014, 

which can be compared with the 3~ value 0.96 (Muller-Krumbhaar 1974, Stauffer 
1981, Heermann and Stauffer 1981). The random site-bond percolational surface can 
also be easily derived for the Cayley tree from table 2 taking Y = 1 and using the site 
probability (Coniglio and Klein 1980, Wu 1981) 

ps  = ( 1 + X)- l  

pspB=$= l / (c -1) .  

and (24): 

In two dimensions qm(2) < 1 < qc(2)  - 1 = 3 and the phase diagram looks like that 
described in § 4. As can be seen in figure 7(d),  the Ising critical point I of correlated 
site percolation is also the place where an infinite network of neighbouring atoms 
appears (Coniglio et a1 1977, Coniglio and Klein 1980) and it is actually a one-state 
Potts tricritical point. Using this fact, the exponent y p  of the mean cluster size when 
approaching the Ising critical point along the temperature axis ( X  = 1) can be derived 
from the extended den Nijs’ conjectures. From the usual scaling law y p  = (2 - 7) v we 
can calculate y p  using the probably exact values for the thermal and magnetic eigen- 
values of the tricritical fixed point (den Nijs 1979, Nienhuis et a1 1979, 1980b, Pearson 
1980, Nienhuis 1982): 

2 - 7 = 2yh - d = 91 v=y;:=1 and 48. 

Thus 

( d  = 2, PB’ < P B  11, =%-  
4 8 -  1.896 

where p ;  is the bond probability at the droplet critical point. This can be compared 
with the series result y p =  1.91 kO.01 (Sykes and Gaunt 1976) and renormalisation- 
group value y p  = 1.89 (Coniglio and Klein 1980). y p  differs, of course, from both the 
Ising and random percolational exponents of the susceptibility and mean cluster size. 
Although the scaling law used here has been stated by Coniglio and Klein (1980), 
they did not identify the king critical point with the q = 1 Potts tricritical point. 

The 3~ phase diagram is very similar to that of the Cayley tree with one essential 
difference (compare figures 7(c) and ( 6 ) ) :  from the continuity argument of 0 4 we 
expect that the tetracritical point and the two-state Potts transition point (which is 
now the droplet critical point) have not merged at q = 1 and d = 3. This would mean 
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that a separate tetracritical point might be found in the system at a bond probability 
p', with p,' < p', < 1. We think that figure 4 in the paper of Heermann and Stauffer 
(1981) supports this idea: pB for the two types of critical endpoints are shown as 
functions of the temperature and the two curves do not meet at the Ising critical 
temperature. However, in the discussions of the Monte Carlo results a phase diagram 
similar to that on the Cayley tree ( p & = p l )  was always suggested (Stauffer 1981, 
Heermann and Stauffer 1981, KertCsz et a1 1982). Further Monte Carlo work would 
be useful in investigating this point. 

According to the discussion of 0 4 a line of classical tricritical points connects the 
tetracritical and droplet critical points. yp along this line can be calculated from the 
classical tricritical exponents: 

Y T Z =  1 and 7 =o .  
Thus 

This value for yp in three dimensions should also be checked, together with the 
determination of yp in the tetracritical point ( pB = p i ) ,  by further numerical work. 
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